联系方式

公司地址:兴义市幸福路1号,邮政银行对面
公司电话:0859-3221725
公司传真:0859-3221725
公司邮编:562400


个性化
      因材施教,让每一个学生享受高品质教育。特开办一对一辅导,一个老师教一个学生,学生那里不懂问那里,老师对学生存在问题一一讲解,让学生最大程度的提高。

小班化 
      亿升培训兴义辅导班人数严格控制在4人以下。4人小班既能提供良好的课堂氛围,又能给学生更多的学习交流机会,同时老师也有有足够的精力“一对一”指导每一位学生,有助于教师精雕细刻,打造精品,培育英才。

系统化 
      亿升培训教师团队由专业全职教师,根据学生不同学科、不同基础和学习能力强弱的差别,做到因材施教,查漏补缺,培优、补良、拔高,快速提高学生的学习能力。

特色化
      亿升培训方法:夯实基础、传授方法、开发智力。
      自由选择时间:按照正常上课时间进行学习还是特定时间学习,完全可以自由选择。

开设科目           
      小学:数学
      初中:数学、物理、化学
      高中:数学、物理、化学
报名须知

辅导时间:星期一至星期天08:00——10:00,10:00——12:00,14:00——16:00,16:00——18:00,19:30——21:30(一个时间段为3节课,根据自身情况选择相应时间段)。

收费标准:
   小学部
    学期周末班:小班:100元/3节课,800元/月;一对一:240元/3节课,
    暑假寒假班:小班:1000元/周期,一对一:2400元/周期;
    初中部
    学期周末班:小班:120元/3节课,480元/月;一对一:280元/3节课,
    暑假寒假班:小班:1200元/周期,一对一:2800元/周期;
    高中部
    学期周末班:小班:150元/3节课,600元/月;一对一:360元/3节课,
    暑假寒假班:小班:1500元/周期,一对一:3600元/周期;
  (注:3节课为两个小时,一个周期为10天,不同老师学费有所不同,每个接受辅导的学生,默认安排10年左右教学经验者的老师
 
龙成培训为兴义市第一批通过教育局审批的机构之一,具有办学资格的一家正规培训机构。兴义市龙成课外培训中心(原龙成教育,2013年创立,兴义口碑品牌)教学面积2400余平方米,活动场所2000余平方。在职教师26人,累计培训学员5000余人次,办学层次:小学、初中、高中学科类培训班(数学、语文、英语),培训模式:一对一、小班制。2019年5月与亿升培训统一管理,原义升教育2009年创办,为第一批通过市教育局审批的机构之一,累计培训学员3000余人次,一直不断自我完善,力求是每一个接受辅导的学生达到目标。办学层次:小学、初中、高中学科类培训班数学、物理、化学。
 
师资
 
教学经验10年以上一线教师,至少带过5届中考、高考毕业班,所带多名学生考入985及211重点院校(2016年参加数学、物理一对一辅导1人上北京大学,2017年参加数学一对一辅导1人上浙江大学),深谙中考、高考、艺术生文化课备考特点。
 
教学特点 
小   学:引导兴趣 传授方法 激发潜能 
初一、高一:培养习惯 巩固基础 激发兴趣 
初二、高二:梳理归纳 查缺补漏 同步超前 
初三、高三:梳理主干 突出重点 精讲考点
 
课程特色
 
一对一:真正能够兼顾到每一个学生,精心进行一对一授课。杜绝班级教学“吃不饱、跟不上”的现象
 
小班化 :亿升龙成培训小班人数严格控制在5人。5人小班既能提供良好的课堂氛围,又能给学生更多的学习交流机会,同时老师也有有足够的精力“一对一”指导每一位学生,有助于教师精雕细刻,打造精品,培育英才。
 
效果佳:采用由浅入深,逐条讲解,学生容易吸收。
 
郑重承诺:免费试听,课程不满意或者无效果可以随时退还剩余课时费。
 
地址:兴义市云南路40号(幸福路1号中国邮政银行对面天桥旁,一到四楼)
地址:兴义市延安路42号(市教育局对面向上300米,龙成培训)
 
网站:www.yseduc.com
 
联系热线:
0859-3221725(亿升校区)
0859-3241663(龙成校区)
0859-3110663(龙成校区)

当前位置: 网站首页 > 教育新闻
教育新闻

想提高高中数学大题得分率?这份解题技巧值得拥有!内含答题思路

高中数学试卷中,做好6道数学大题,你的高中成绩一般不会低。如何搞定这些题目呢?不仅要有解题技巧,还要有实用的解题思路,一起来看看吧。

三角函数

注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)

数列

1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

立体几何

1、证明线面位置关系,一般不需要去建系,更简单;

2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;

3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

概率

1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

2、搞清是什么概率模型,套用哪个公式;

3、记准均值、方差、标准差公式;

4、求概率时,正难则反(根据p1+p2+...+pn=1);

5、注意计数时利用列举、树图等基本方法;

6、注意放回抽样,不放回抽样;

7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;

8、注意条件概率公式;

9、注意平均分组、不完全平均分组问题。

圆锥曲线

1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;

2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;

3、战术上整体思路要保7分,争9分,想12分。

导数、极值、最值、不等式恒成立

1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);

2、注意最后一问有应用前面结论的意识;

3、注意分论讨论的思想;

4、不等式问题有构造函数的意识;

5、恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);

6、整体思路上保6分,争10分,想14分。

答题思路

在高中时很多同学往往因为时间不够导致数学试卷不能写完,试卷得分不高,掌握解题思想可以帮助同学们快速找到解题思路,节约思考时间。

函数与方程思想

函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。

数形结合思想

中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确化学解题意、快速地解决问题。

特殊与一般思想

用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。

极限思想解题步骤

极限思想解决问题的一般步骤为:

1、对于所求的未知量,先设法构思一个与它有关的变量;

2、确认这变量通过无限过程的结果就是所求的未知量;

3、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

分类讨论思想

同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。建议同学们在分类讨论解题时,要做到标准统一,不重不漏。

分享到:
点击次数:  更新时间:2017-10-16 18:46:02  【打印此页】  【关闭